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Transition Prediction in Hypersonic Boundary Layers Using 
Receptivity and Freestream Spectra 

P. Balakumar* and Amanda Chou† 
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NASA Langley Research Center, Hampton, VA 23681 

Boundary-layer transition in hypersonic flows over a straight cone can be predicted 
using measured freestream spectra, receptivity, and threshold values for the wall pressure 
fluctuations at the transition onset points. Simulations are performed for hypersonic 
boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a 
freestream Mach number of 10. The steady and the unsteady flow fields are obtained by 
solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 
5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space 
discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta 
scheme for time integration. The calculated N-factors at the transition onset location 
increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and 
remain almost the same for flow over a blunt cone. The receptivity coefficient increases 
slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone 
and are on the order of 1 for a blunt cone. The location of transition onset predicted from 
the simulation including the freestream spectrum, receptivity, and the linear and the weakly 
nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. 
The simulations over-predict transition onset by about twenty percent for the blunt cone. 

Nomenclature 

Crecpt =  receptivity coefficient 
cv  =  specific heat 
E  =  total energy  
e  =  internal energy 
F  =  flux vector in the x-direction 
f          =          frequency in Hz 
G  =  flux vector in the r-direction 
k  =  thermal conductivity 
M        =         Mach number 
N  =  N factor 
Pr  =  Prandtl number 
Ps  =   Mean surface pressure, Pa 
p  =  pressure, Pa 
PSD =  power spectral density 
Q  =  conserved flow variables vector 
R  =  gas constant, J/(kg*K) 
Rn  =  nose radius, mm 
Re  =  unit Reynolds number, per meter 
Res  =  Reynolds number based on the distance s 
r  =  radial coordinate 
rms =  root mean square 
S  =  source term or entropy 
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s          =         distance along the surface, m 
T  =  temperature, K 
t  =  time 
U  =  mean axial velocity 
u  =  axial velocity 
V  =  radial velocity 
X  =  axial coordinate, cm 
x0  =  reference x location 
Y  =  radial coordinate or the normal to the surface, cm 
α  =  wavenumber in the x-direction 
η  =  curvilinear coordinate in the radial direction, boundary-layer similarity coordinate 
δ          =         boundary layer thickness 
γ  =  specific heat ratio 
µ  =  viscosity 
ξ  =  curvilinear coordinate in the axial direction 
ρ  =  density 
ω  =  frequency in radians 
 
Subscripts 
ac  =  acoustic 
e          =         boundary-layer edge conditions 
max =  maximum 
n  =  normal to the surface, neutral point 
o  =   stagnation condition 
s  =   surface 
T  =  transition location 
w  =  wall 
∞  =  freestream quantities 

I. Introduction 
ccurate prediction of transition onset and transition end points, as well as modeling of the transitional and 
turbulent regions, are major concerns when using CFD codes to compute aerodynamic quantities such as lift, 

drag, skin friction, and heat transfer. Transition from a laminar to a turbulent state in shear flows occurs due to the 
evolution and interaction of different disturbances inside the shear layer. Although there are several mechanisms and 
routes to go from a laminar to a turbulent state, most of the routes in quiet environments generally follow these 
fundamental processes:1 

1. Receptivity 

2. Linear instability 

3. Nonlinear stability and saturation 

4. Secondary instability and breakdown to turbulence 

In the receptivity process, unsteady disturbances in the environment interact with the boundary layer and/or with the 
inhomogeneities in the geometry to generate instability waves inside the shear layer. In quiet environments, the 
initial amplitudes of these instability waves are small compared to any characteristic velocity, density, and 
temperature scales in the flow. In the second stage, the amplitudes of these instability waves grow exponentially 
downstream and this process is described by the linearized Navier-Stokes equations. Further downstream, the 
amplitudes of the disturbances become large and the nonlinear effects inhibit the exponential growth and the 
amplitude of the waves eventually saturate. In the next stage, the finite-amplitude saturated disturbances become 
unstable to two- and/or three-dimensional disturbances. In this stage, the secondary instability appears and the 
spectrum broadens due to complex interactions and further instabilities. The flow becomes turbulent within a short 
distance downstream. When the disturbances reach large amplitudes due to exponential growth, the nonlinear effects 
set in and the mean flow becomes distorted. As a result of this distortion, local skin friction and heat transfer rates 
increase from their respective laminar values. The location where they start to deviate from the laminar values is 
defined as the transition onset point.  Hence transition onset is determined by three factors: (1) the initial amplitudes 
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of the instability waves, (2) the growth rates of the instability waves, and (3) the threshold value for the amplitude of 
the instability waves at which transition onset will occur. 

Most of the research in hypersonic boundary layer transition is concerned with the characteristics of the 
instability waves, especially the growth rates and the evolution of the second mode in flows over flat plates and 
cones.2-12 Linear stability computations and PSE (Parabolized Stability Equations) computations have been 
performed and compared with experiments.13-14 The transition prediction methods such as the N-factor method15-17 
are based on the growth rates for a single frequency. This method works reasonably well when the N-factors at 
transition onset are correlated very well with a particular tunnel. Even a well-calibrated fixed N-factor for a 
particular tunnel is not sufficient for transition prediction, because the N-factor at transition onset depends on the 
unit Reynolds number. The unit Reynolds number effect is explained by the fact that the most-amplified second 
mode frequencies increase with unit Reynolds number and the noise level decreases with increasing frequency. The 
second factor is that the nose Reynolds number increases with the unit Reynolds number and the transition heavily 
depends on the nose Reynolds number.18, 19  
 Hence, to remove the uncertainties associated with using the N-factor to predict transition onset, the effects of 
the freestream disturbances in the transition process must be included. The receptivity process in hypersonic flows 
has been investigated for flow over flat plates, wedges, and cones at different flow conditions.20 It was found that 
amplitudes of the instability waves generated by the slow acoustic freestream disturbances are about 3-5 times the 
amplitude of the freestream disturbances. The next part of the problem is to determine criteria that can be used to 
estimate the transition onset point. Here, the experimental and direct numerical simulations results provide some 
threshold values for the amplitude of the disturbances near the transition onset location. The experiments21 show that 
the transition onset occurs when the root mean square (rms) of the pressure fluctuations at the wall normalized by 
the mean boundary layer edge reaches a value between 0.1 and 0.2. The rms values are generally obtained from a 
finite band of frequencies. In the N-factor methods, a single frequency is considered in the estimation of transition 
onset location. To follow the single frequency approach, all of the energy in the spectrum would be assigned to the 
most-amplified frequency. This is not physically correct because, in reality, the disturbance growth rates strongly 
depend on the frequency. Hence, assigning all the energy into one frequency overestimates the amplitude levels in 
the boundary layer.  
 Another issue that arises in these transition prediction methods is that when the normalized rms values of the 
pressure fluctuations reach 0.1 and 0.2, nonlinear effects will set in. As the process is no longer linear, weakly 
nonlinear effects must be included in the prediction method. One approach is to divide the frequency spectrum into 
small bins and to replace the energy in these bins by the amplitude of energy assigned to the single middle 
frequency. Mack22 proposed this idea in his amplitude-based transition prediction method. Later, Fedorov23 also 
used this method to predict transition in hypersonic boundary layers. This is the approach adapted for the work 
presented in this paper. The first step is to divide the measured freestream spectra into small bins and to compute the 
amplitude of the central frequency. The second step is to superimpose all the frequencies with these computed 
amplitudes at the outer boundary of the domain and to perform simulations to determine the evolution of the 
disturbances inside the boundary layer. The final step is to determine the transition onset location using a threshold 
value for the disturbances. This method considers the freestream spectrum, the receptivity process, linear and 
weakly nonlinear evolution of the disturbances, and a threshold value for the amplitudes of the disturbances to 
estimate the transition onset location. The objective of this paper is to predict the transition location on a 7° half-
angle cone at a freestream Mach number of 10 at different unit Reynolds numbers using this approach. The 
predicted transition and stability will be compared with the experiments performed at the Arnold Engineering 
Development Center (AEDC) Hypervelocity Wind Tunnel 9.21, 24 Stability and N-factor computations were also 
performed21, 24, 25 using the STABL code17 for different cases and good agreement between the computed and 
measured amplification rates and most-amplified frequencies were observed for sharp and moderately blunted 
cones.  
 In Sec. 2, the model parameters and the flow conditions simulated in this paper are given. In Sec. 3, the 
governing equations and the solution algorithms used in the simulations are briefly described. The form and the 
estimation of the amplitudes of the acoustic field imposed in the outer boundary are also described in this section. In 
Sec. 4, the computational results are presented. The results include mean flow profiles, N-factors obtained from 
linear stability and PSE computations, receptivity coefficients for single waves, and the transition onset points 
obtained from the simulations with multiple frequencies. In Sec. 5, the conclusions drawn from this investigation are 
given. 
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II.  Models and Flow Conditions 
 A large amount of boundary-layer transition and stability data were obtained at Mach 10 in the Arnold 
Engineering Development Center (AEDC) Hypervelocity Wind Tunnel 9 on a 1.5-m-long 7° half-angle cone at unit 
Reynolds numbers between 1.8 and 31 million per meter.24 The nose radius of the cone was varied from 0.152 to 
50.8 mm. The transition onset locations were determined using coaxial thermocouples and temperature sensitive 
paint. The stability measurements were obtained using high-frequency response pressure sensors. This paper 
presents the simulation results for two nose radii, Rn = 0.152 and 5.08 mm. 

Computations were performed for the five cases given in Table 1. We also included the corresponding 
experimental run number provided in Ref. 24 in the first column of the Table 1. The freestream conditions were 
selected to match the experimental conditions. The freestream Mach numbers and the unit Reynolds numbers for the 
sharp nose Rn = 0.152 mm case are (9.39, 2.03*106/m),  (9.60, 7.03*106/m), and (9.86, 16.25*106/m).  The 
corresponding Reynolds numbers based on the nose radius are 308, 1068, and 2470, respectively. We called these 
three cases as Case 1, 2, and 3, respectively. Similarly, the freestream Mach numbers and the unit Reynolds numbers 
for the medium blunt nose Rn = 5.08 mm case are (9.81, 18.17*106/m), and (10.0, 31.8*106/m).  The corresponding 
Reynolds numbers based on the nose radius are 92304, and 157886, respectively. We called these two cases as Case 
4 (medium radius), and 5, respectively. The wall temperature is fixed at 0.30 times the freestream stagnation 
temperature. The Prandtl number, specific gas ratio, and the gas constant are Pr = 0.74, γ = 1.4, and R = 297 
J/(kg*K), respectively. The Sutherland viscosity law of the following form is used to compute the viscosity: 

µ =1.458*10−6 T 1.5

(T +102.7K )
.                                                         (1) 

Marineau et al. 24, 21 used slightly different equations based on a curve fit to the experimental data to calculate the 
viscosity in computing the unit Reynolds numbers. This caused about 10% differences between the unit Reynolds 
numbers given in Table 1 and in Ref. 24. 

 
Table 1: Test Conditions 

  
Case R

n
 

(mm) 
P

o
 

(MPa) 
T

o
 

(K) 
M
∞
 p

∞
 

(kPa) 
T
∞
 

(K) 
Re/m 

(1E6/m) 

1 (3745) 0.152 2.3 982 9.39 82.34 52.69 2.03 

2 (3743) 0.152 8.9 1018 9.60 275.15 52.38 7.03 

3 (3742) 0.152 22.6 1035 9.86 584.97 50.62 16.25 

4 (3746) 5.08 22.7 978 9.81 607.78 48.30 18.17 

5 (3748) 5.08 43.4 1016 10.00 1022.64 48.38 31.08 

 

III. Governing Equations 

The governing equations are the two-dimensional unsteady compressible Navier-Stokes equations, written in 
conservation form and in cylindrical coordinates: 

 

       

€ 

∂
∂t
rQ+

∂rF
∂x

+
∂rG
∂r

= S,                                                                  (2) 

      



 
American Institute of Aeronautics and Astronautics 

 

5 

€ 

Q =

ρ

ρE
ρu
ρv

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

.                                                                                     (3) 

Here, (x, r) are the cylindrical coordinates, (u, v) are the velocity components, ρ is the density, and p is the pressure. 
The total energy, E, is given by:  

€ 

E = e +
u2 + v 2

2
, 

 e = cvT ,  p = ρRT,                                                                        (4) 
where e is the internal energy and T is the temperature. The fluxes F, G, and the source term S are described in Kara 
et al.19  The viscosity, µ, is computed using Sutherland’s law Eq.(1). The second coefficient of viscosity is assumed 
to be -2/3µ and the thermal conductivity, k, is given in terms of the Prandtl number, Pr. The variables ρ, p, T and 
velocity are non-dimensionalized by their corresponding reference variables ρ∞, p∞, T∞ and RT∞  respectively. 

The reference value for length is given by νx0 /U∞ , where x0 is a reference location. For the computations, the 
equations were transformed from the physical coordinate system (x, r) to the computational curvilinear coordinate 
system 

€ 

ξ,η( )  in a conservative manner. 

Solution Algorithm 
The governing equations are solved using a 5th-order accurate weighted essentially non-oscillatory (WENO) 

scheme for space discretization and using a third order total-variation-diminishing (TVD) Runge-Kutta scheme for 
time integration. Shu26 explains the WENO and TVD methods. Atkins27 gives the application of the essentially non-
oscillatory (ENO) method to the N-S equations. Balakumar28 and Kara et al.29 describe in detail the solution method 
implemented in this computation. 

At the outflow boundary, an extrapolation boundary condition is used. At the wall, we use viscous conditions for 
the velocities and compute density from the continuity equation. In the mean flow computations, we prescribe the 
freestream values at the outer boundary, which lies outside the bow shock. The angle of attack is zero in all of the 
cases computed here. In the unsteady computations, the acoustic perturbations are superimposed on the uniform 
mean flow at the upper boundary. The procedure is to compute the steady mean flow first by performing unsteady 
computations using a variable time step until the maximum residual reaches a small value ~10-11. The next step is to 
introduce unsteady disturbances at the upper boundary of the computational domain and to perform time-accurate 
computations to investigate the interaction and evolution of these disturbances downstream. The grid is generated 
using analytical formulae. The grid stretches in the η direction close to the wall and is uniform outside of the 
boundary layer. In the ξ direction, the grid is symmetric about the leading edge and very fine near the nose and is 
uniform in the flat region. 

The measured freestream broadband acoustic field21 (Fig. 1) that impinges on the outer boundary is modeled by 
an equivalent series of discrete Fourier acoustic modes as shown in Fig. 2(a). 
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Figure 1. Freestream pressure fluctuations in the AEDC Tunnel 9, by Marineau et al.21 
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Figure 2. Computations of the amplitudes of the freestream acoustic disturbances. (a) PSD and the bins used 

to compute the energy, and (b) computed amplitudes based on bin sizes of 1 and 10 kHz. 

 

The discrete acoustic field is taken to be in the following form, 

pac( x,t )= pac ,nf e
i(αac ,nf x−ωnf t+φnf ) + c.c.( )

nf =1

nf max

∑ .                                               (5) 

ωnf = 2π fnf ,

fnf = fmin + ( nf −1)Δ f .
 

 Here nfmax is the number of discrete modes considered in the simulation, αac,nf is the x wavenumber of the 
acoustic wave, ωnf is the corresponding frequency in radians of the acoustic disturbance, fnf is the frequency in Hz, 
fmin is the lower bound of the frequencies considered, Δf is the width of each bin, and c.c. refers to the complex 
conjugate of the first term. The frequency parameters are selected to cover all the unstable frequencies centered 
around the most amplified frequency.  
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 The amplitude pac ,nf  is evaluated from the measured PSD of the freestream pressure fluctuations shown in 

Fig.1. The power spectral density for a disturbance given by Eq. (5) is 
 

pac ,nf( )PSD = 2 pac ,nf( )
2

                                                                         (6) 

 
The measured spectrum at high frequencies can be approximated by  
 

pac ,nf( )PSD =C fnf
−3.5 / Hz                                                                    (7) 

 
where fnf is the frequency in Hz and C is a constant determined from the measurement (Fig.1). The estimated value 
of C in this case is C = 126.5*106. Equating Eqs. 6 and 7 we determine the amplitude pac ,nf  from 

2 pac ,nf( )
2
=C fnf

−3.5Δ f .                                                                     (8) 

 
Figure 2(b) depicts the magnitude of pac ,nf  for two bin sizes of Δf =1 and 10 kHz. The approximate amplitudes at 

100, 200, 300, 400 and 500 kHz using the bin size of 1 kHz are 4.5*10-4, 1.3*10-4, 6.5*10-5, 3.9*10-5, and 2.7*10-5, 
respectively. It is seen that the amplitude of the acoustic wave with a frequency of 500 kHz is about 16 times smaller 
than that for the 100 kHz acoustic wave. This amplitude ratio is equivalent to an N-factor of 2.7. 

IV. Results 
(a) Mean Flow  

Figures 3(a) and 3(b) show the mean flow density contours computed using the WENO code for Case 3. Figure 
3(a) depicts the flow field for the entire domain and Fig. 3(b) shows the results for the nose region. Figures 4, 5, and 
6 depict the boundary-layer density profiles at different axial locations in physical and similarity coordinates for 
Cases 1, 2, and 3, respectively. The boundary-layer profiles slowly approach the similarity profile close to x = 4.0 
cm for Cases 1 and 2 and close to x = 10 cm for Case 3. 

Similarly, Figures 7, 8 and 9 show the mean flow results for the blunt nose Cases 4 and 5. The experiments and 
computations18, 19 have shown that nose bluntness stabilizes hypersonic boundary layers. This is due to the formation 
of a strong entropy layer across the bow shock. This entropy layer persists for a long distance before it merges with 
the developing boundary layer along the wall. Figures 7(a) and (b) depict the entropy contours for the sharp and 
blunt nose Cases 3 and 4, respectively. For the sharp nose case, a small entropy layer appears near the nose and it 
merges with the boundary layer within a short distance from the nose. For the large nose radius case, the entropy 
layer that is visible near the nose region, persists downstream for a long distance and eventually merges with the 
boundary layer. Figures 8(a) and (b) show the density and entropy profiles at different axial locations for the Case 4. 
Up to x = 50 cm, no discernable boundary layer for the blunt nose case exists near the wall. The boundary layer 
thickness at x = 20 cm for Case 3 (Fig. 6(a)), is about 0.075 cm. In contrast, it is about 1.0 cm for the blunt nose 
case. Figure 8(b) clearly shows the entropy layer in the outer part of the boundary layer. The outside entropy layer 
merges with the boundary layer near the wall close to x = 50.0 cm. The entropy layer and the boundary layer in non-
dimensional units merge approximately 100 nose radii downstream from the nose. Similarly, Figs. 9(a) and (b) show 
the density and the entropy profiles at different axial locations for Case 5. There are no noticeable quantitative 
differences between the profiles for Cases 4 and 5.  



 
American Institute of Aeronautics and Astronautics 

 

8 

 
Figure 3. Computed mean density contours for Case 3. (a) Entire domain, and (b) near the nose region. 
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Figure 4. Boundary layer density profiles (a) in physical and (b) similarity coordinates at different axial 

locations for Case 1. 
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Figure 5. Boundary layer density profiles (a) in physical and (b) similarity coordinates at different axial 

locations for Case 2. 
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Figure 6. Boundary layer density profiles (a) in physical and (b) similarity coordinates at different axial 

locations for Case 3. 

 
Figure 7. Contours of entropy for flow over the (a) sharp (Case 3), and (b) blunt (Case 4) cones (not to scale).  
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Figure 8. Boundary layer profiles at different axial locations for Case 4. (a) density, (b) entropy. 



 
American Institute of Aeronautics and Astronautics 

 

10 

0.0 2.0 4.0 6.0 8.0

0.0

0.2

0.4

0.6

0.8

1.0

2.0
10.0
20.0
40.0
50.0
60.0
100.0Y n

(c
m
)

X (cm)

(b)

Entropy, S
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

2.0
10.0
20.0
40.0
50.0
60.0
100.0

Y n
(c
m
)

ρ / ρ∞

X (cm)

(a)

 
Figure 9. Boundary layer profiles at different axial locations for Case 5. (a) density, (b) entropy. 

(b) Linear Stability  
Linear stability analysis and parabolized stability equations (PSE) analysis were performed on the computed 

boundary layer profiles for the Cases 1-5. Figures 10(a-e) show the computed N-factors using parallel linear stability 
and PSE for Cases 1-5, respectively. The measured transition onset locations are also marked in each of the figures 
and are given in Table 2. The measured transition onset locations for the Cases 1-5 are  xTcase1 = 84 cm, xTcase2 = 36 
cm, xTcase3 = 25 cm, xTcase4 = 68 cm, and xTcase5 = 68 cm, respectively. The maximum N-factors at the transition onset 
locations obtained from the PSE computations based on (ρu)max are Ncase1 = 4.0, Ncase2 = 5.1, Ncase3 = 6.7, Ncase4 = 3.0, 
and Ncase3 = 3.0. The corresponding peak frequencies at transition onset for Cases 1, 2, 3, 4, and 5, are 90, 260, 460, 
210 and 270 kHz, respectively. It is seen for sharp nose cases that the N-factors at the transition onset location 
increase with unit Reynolds numbers. The frequencies increased by approximately 3 and 5 times for Cases 2 and 3, 
respectively, when compared to Case 1. The unit Reynolds number increased from 2.03*106 for Case 1 to 7.03*106 
and 16.25*106 for Cases 2 and 3, respectively.  
 

Table 2: Computed and measured transition onset points. 
 

Case Rn(mm) Re/m X
T
 (cm) N-Factor 

(PSE) 
Freq.  
(kHz) 

(p
rms

)T / Ps Expt. 

0.1 0.2 

 1 0.152 2.03 60 76 84 4.0 90 

2 0.152 7.03 28 36 36 5.1 260 

3 0.152 16.25 17 21 25 6.7 460 

4 5.08 18.17 92 96 68 3.0 210 

5 5.08 31.08 90 93 68 3.0 270 
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Figure 10. N-factor curves computed from the linear stability analysis and the PSE analysis based on 

(ρu)max for the (a) Case 1, (b) Case 2, (c) Case 3 , (d) Case 4, and (e) Case 5. 

To estimate the expected dominant frequency bands near transition onset, the variation of the N-factors near the 
transition onset points with respect to frequency are plotted in Figs. 11 and 12. In these figures, receptivity analysis 
and the freestream amplitude variations are not considered in the analysis. Figure 11 displays the results for the 
sharp cone Cases 1, 2, and 3 at the stations x = 83, 35 and 25 cm, respectively, and Fig. 12 shows the results for the 
blunt cone Cases 4 and 5 at stations x = 70 and 80 cm, respectively. We also included the maximum N-factors and 
the corresponding frequencies for each case in the figures.  
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The first observation is that the width of the unstable frequency band increases significantly with the unit 
Reynolds number for the sharp cone cases. To obtain an estimate for the bandwidth of the expected frequencies, a 
horizontal line at two less than the maximum N-factor values was drawn. The difference of two in N-factor 
corresponds to an amplitude reduction of approximately 8 times from the amplitude at the maximum N-factor. The 
estimated bandwidths for the Cases 1, 2 and 3 are (70-130), (210-370), and (380-690) kHz, respectively. The results 
for the blunt nose, Cases 4 and 5, show that the unstable frequency bands are very narrow compared to the sharp 
cone case. It is to be also noted that the measured transition onset location for Cases 4 and 5 occurred at almost the 
same location: x = 68 cm. In the experiment, there was an uncertainty in detecting the onset location of about 13 cm 
in the measurements corresponding to Cases 4 and 5. Hence, the estimated transition location is approximately 
between 68 and 81 cm. The estimated bandwidths at x = 70 and 80 cm are (190-230) and (180-215) kHz for Case 4 
and they are (240-290) and (240-275) for Case 5. It is seen that the unstable frequency bandwidths are very narrow, 
about 40-50 kHz, for flows over blunt cones compared to 300 kHz for the sharp cone cases at comparable Reynolds 
numbers. 
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Figure 11. Variation of N-factors with respect to frequency at locations near the measured transition onset 
points, computed from the PSE analysis and based on (ρu)max for the Cases 1, 2, and 3. 
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Figure 12. Variation of N-factors with respect to frequency at locations near the measured transition onset 
locations computed from the PSE analysis and based on (ρu)max for the Cases 4 and 5. 

(c) Interaction of Slow Acoustic Waves with the Cone 
Before we performed the transition simulations with a broad spectrum, we investigated the receptivity process 

by superimposing a single two-dimensional slow acoustic disturbance at the outer computational boundary. 
Unsteady simulations are performed for several frequencies and the results are presented for the frequencies of 78, 
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240, and 440 kHz for Cases 1, 2, and 3, respectively. The initial amplitudes of the forcing freestream acoustic 
disturbances are kept at a constant value of pac / p∞ = 2*10

−5 in the receptivity investigations. 
Figures 13(a-c) show the evolution of the wall pressure fluctuations induced by the slow acoustic wave for the 

sharp cone, Cases 1, 2, and 3. The figures clearly show the generation and the eventual exponential growth of the 
instability waves inside the boundary layer. It is seen that the disturbances grow from the leading edge and reach 
large amplitude levels near the middle of the cone.  The results of linear PSE calculations for the same mean 
boundary layer profile are included in these figures for comparison with the computations.  The PSE calculations are 
initialized at x = 5 cm with the initial conditions obtained from the eigenfunctions obtained from the linear stability 
calculations. The PSE results are observed to agree very well with the computations starting from x ~ 30 cm for 
Case 1 and starting from x ~ 10 cm for the Cases 2 and 3. A receptivity coefficient was defined as the amplitude of 
the wall-pressure fluctuations at the neutral point non-dimensionalized by the freestream acoustic pressure:  

 
,

( )
wall

wall n
recpt p

ac

pC
p

=                                                                        (9) 

The amplitudes of the wall-pressure fluctuations at the neutral points are approximately 7.5*10-5, 8.0*10-5, and 
9.0*10-5 for the Cases 1, 2, and 3, respectively. The neutral points are obtained from the PSE results and are located 
at x = 16, 8, and 5 cm for the three cases, respectively.  With those amplitudes, and a freestream acoustic pressure 
level of 2*10-5, the receptivity coefficients are approximately 3.75, 4, and 4.5, respectively for the three cases. The 
receptivity coefficients increase only slightly with increasing unit Reynolds numbers. The receptivity coefficient for 
the flow over a sharp 7-deg cone at a freestream Mach number of 6 is about 3.13 It is seen that the receptivity 
coefficients in these high Mach number cases are slightly higher but comparable to that at the lower Mach number. 

Similarly, Figs. 14 and 15 show the receptivity simulation results for the Cases 4 and 5. Figure 14 shows the 
density fluctuations inside the boundary layer caused by the interaction of a slow acoustic wave at a frequency of 
250 kHz with a blunt cone for Case 5. Figure 14 clearly demonstrates the effect of bluntness in the generation of 
disturbances near the nose region. As was discussed previously there exists no entropy layer for the sharp nose case, 
and the freestream disturbances excited the boundary layer starting at the nose tip. In the large bluntness case, the 
acoustic disturbances propagate across the leading-edge bow shock and first perturb the entropy layer.  It is seen that 
these disturbances, as they evolve downstream, remain inside the entropy layer and get into the boundary layer 
farther downstream. 
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Figure 13. Amplitude of the pressure fluctuations on the wall generated by the slow acoustic wave for the 

(a) Case 1,  (b) Case 2, and (c) Case 3. 

Figures 15(a)-(b) show the evolution of the wall pressure fluctuations for these cases. The amplitude of the 
freestream acoustic pressure is the same, where pac / p∞ = 2*10

−5 . Since large fluctuations were observed inside 
the entropy layer, the variations of the maximum mass-flux fluctuations are also plotted in these figures. It is seen 
that there are large differences in the generation and evolution of disturbances between the sharp nose cases and the 
blunt nose cases. The figures show that the amplitudes of the wall pressure fluctuations oscillate without growing up 
to x ~ 60 cm. Beyond that, the disturbances grow exponentially due to the instability of the boundary layer.  The 
maximum mass-flux fluctuation amplitudes initially grow slowly up to x ~ 20 cm and remain almost constant 
downstream up to x ~ 80 cm. Beyond that, the mass-flux fluctuations due to the second-mode instability become 
larger than the mass-flux fluctuations in the entropy layer. These figures also include the results from the PSE 
computations. The growth of the disturbances agrees very well with the PSE results in the unstable second mode 
region. The amplitudes of the wall pressure fluctuations at the neutral points x = 58 cm for Case 4, and x = 60 cm for 
Case 5 are 2.4*10-5 and 3.0*10-5, respectively. The receptivity coefficients are about 1.2 and 1.5 for Cases 4 and 5, 
respectively. They are about 3 times smaller than that for the sharp cone cases. 
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Figure 14. Density fluctuations generated by the interaction of a slow two-dimensional acoustic wave with 
the blunt cone for Case 5. 
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Figure 15. Amplitude of the pressure fluctuations on the wall generated by the slow acoustic wave for the 

(a) Case 4, and (b) Case 5. 

(d) Transition prediction 
In this section, the transition prediction results obtained from the simulations by superposing a broad spectrum of 

slow acoustic disturbances at the outer boundary of the computational domain are presented. As discussed in Sec. 2, 
the measured broadband spectrum is discretized into a sum of discrete Fourier waves given by Eq. (6). The 
amplitude of each wave is obtained from the measured spectrum using Eq. (8). The phase angles are selected using 
random numbers. The number of waves, bin sizes, and the minimum frequencies are selected to span the unstable 
frequency ranges for each case. The number of waves (nfmax), minimum frequencies (fmin) in kHz and the bin sizes 
(Δf) in kHz for the fives cases are: Case 1 (11, 30, 10), Case 2 (11, 200, 10), Case 3 (21, 390, 10), Case 4 (31, 100, 
5), and Case 5 (31, 100, 5). 

Figures 16(a) and (b) show the density perturbation contours obtained from the simulations for Case 2. Figure 
16(a) depicts the perturbations outside and inside the boundary layer and Fig. 16(b) displays the results inside the 
boundary layer in a small downstream region. Since the phase angles are constants in time, the freestream forcing is 
periodic in time. Figure 16(a) shows that a wave-packet-type forcing occurs in the freestream due to the broadband 
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acoustic disturbances. Figure 16(b) also shows that the disturbances generated are wave packets consisting of all the 
frequencies convecting downstream and growing in amplitude.  

 

 

 
Figure 16. Density fluctuations generated by the interaction of broadband, slow two-dimensional acoustic 
disturbances with the sharp cone for the Case 2. (a) in a larger domain, and (b) inside the boundary layer 
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Figure 17. Amplitude of the pressure fluctuations on the wall generated by the slow acoustic waves for the 

Case 2 (a) in linear-scale, and (b) in log-scale. 

Figures 17(a) and (b) show the wall pressure perturbations generated by the interaction of plane two-dimensional 
acoustic disturbances with the cone for Case 2. Figure 17(a) displays the results in linear-scale and Fig. 17(b) 
displays the results in a log-scale. These pictures illustrate quantitatively the form and the amplitude variations of 
the wall pressure fluctuations generated by a broadband acoustic disturbance. As observed in Fig. 16(b), the 
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disturbances at a fixed time consist of a train of wave packets whose amplitudes grow as they travel downstream. 
Transition onset for this case was measured in the experiment to be around x = 36 cm. It is seen that the amplitude 
reaches large magnitudes near x ~ 30 cm and the amplitude does not grow further downstream. 

From the simulation results, the variation of the root mean square (rms) of the pressure fluctuations at the wall, 
the amplitude spectrum and the power spectral density (PSD) of the wall pressure fluctuations at different axial 
locations were computed for all five cases. From the computed rms values, the transition onset location was 
predicted for all of the cases using threshold values of prms / Ps  = 0.10 and 0.20.  These values are selected based on 
the experimentally observed prms / Ps at the transition onset location, which varied between 0.10 and 0.20.21 Figures 
18-20 show the results for the sharp cone Cases 1, 2, and 3 and Figs. 21 and 24 show the results for the blunt cone 
Cases 4 and 5.  

Figure 18(a) shows the variation of the prms / Ps along the axial direction for Case 1. First, the simulations were 
performed with discretized energy for the frequency band between 30 and 130 kHz and random phase angles 
(indicated by the line marked “random 1”). This frequency range covers the most unstable frequency band. The 
results are shown in the red solid line in Fig. 18. The experimentally measured rms values are also included as black 
symbols in Fig. 18(a). The simulation results obtained using this approach follow the trend of measured values, but 
the computed rms values at fixed axial stations are about two times higher than measured in the experiment. This is 
the first time comparisons are made between the computed and the measured absolute amplitudes. The predicted 
transition onset locations based on prms / Ps = 0.1 and 0.2 are 60 and 76 cm, respectively, for Case 1. The 
experimentally observed transition onset point is at about 84 cm. The predicted transition onset locations are 
compared to the measured values in Table 2. The agreement between the computations and the experiment is very 
encouraging. There may be several reasons for the differences, including the use of plane vs. oblique incident waves, 
the use of a one-dimensional spectrum vs. a two-dimensional spectrum, etc. Speculation on any specific reason for 
the difference is not made at this time, but investigating these differences must be pursued both experimentally and 
computationally to bridge the gap. 

Several simulations were also performed to understand the effects of non-linearity and the bandwidth of the 
input disturbances. The solid green line displays the evolution of prms obtained from the linear simulations. These 
simulations were performed with the same input acoustic waves as the previous simulations, but with the amplitudes 
of the input waves decreased by a factor of 10. After the simulations, the results were scaled back by 10 times to plot 
the results. As expected, the linear calculations and the non-linear calculations are the same up to x ~ 30 cm. Beyond 
that, the rms from the linear calculations grows faster than the nonlinear results. The results reveal that nonlinearity 
stabilizes the growth of the disturbances. This finding agrees with the observations made by Kuehl et al.30 We also 
performed a simulation with a narrower input band of 70 to 100 kHz where the amplitudes of the waves remain the 
same as the previous simulation. As expected, the rms is initially much smaller than in the full simulation and when 
the amplitude reaches about 0.10, the results obtained with a narrow band input almost follows the results obtained 
with the wider band. This shows that the frequency band causing transition is very narrow, in the range of 70-100 
kHz. A simulation was also performed with only one frequency input. This was the approach used in the past. The 
results obtained for a frequency of 80 kHz are shown in Fig. 18(a). As expected, the prms / Ps  reaches a value 0.10 
farther downstream, at about 78 cm, compared to the full simulation.  

Figure 18(b) shows the computed amplitude (rms) spectra at an axial location of x = 80 cm. The results obtained 
with the linear simulations are depicted. The amplitude with the full simulation (random 1) is smaller than that 
obtained by the linear calculations. It agrees with the previous observation that non-linearity stabilizes the growth of 
the disturbances. The amplitude peaks at about 90 kHz and the maximum amplitude is about 0.50. If the frequency 
band with amplitudes at 1/5th of the maximum amplitude is selected as the dominant frequencies, the bandwidth of 
the most amplified frequencies ranges from 70 to 100 kHz. Figure 18(c) shows the computed and measured power 
spectral density (PSD) at the same axial location, x = 80 cm. The computed shape of the PSD and the peak 
frequency agree very well with the measurements. The maximum computed PSD amplitude is about an order higher 
than the measured value. We observed a similar behavior in the rms comparison. 
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Figure 18. (a) Variations of the rms of the wall pressure fluctuations along the cone, (b) spectral amplitude 
of the pressure fluctuations at x = 80 cm, and (c) power spectral density at x = 80 cm for Case 1. 

 
Similarly, Figures 19 and 20 show the results for the Cases 2 and 3. Figure 19(a), (b) and (c) display the results 

obtained from several simulations for Case 2. The bandwidth of the input frequencies in this case is from 200 to 300 
kHz and the bin size is 10 kHz. The simulations were performed with four random number sets for the phase angles. 
The results are denoted as random 0, 1, 2, and 3 in the figures. The results shown by the line marked “random 0” are 
obtained with zero phase angles. A linear simulation was also performed, as described above, and one simulation 
was performed with a single frequency input of f = 240 kHz. Figure 19(a) displays the variation of the rms of the 
wall pressure fluctuations, prms, obtained from several simulations. The experimentally measured rms values are also 
included as black symbols in Fig. 19(a). The simulation results obtained using this approach follow the measured 
values. The computed rms values at fixed axial stations also agree well with the measurements in this case. The 
disturbances evolve linearly up to x ~ 26 cm. Beyond that, the growth of the disturbances deviates from the linear 
theory and the growth is stabilized by the nonlinearity. Another observation is that the evolution of the disturbances 
with no phase difference behaves differently compared to the disturbances obtained with the random phase angles. 
The growth is strongly stabilized by the nonlinearity in the no-phase-angle case compared to the other cases. The 
results with the single frequency input grow exponentially according to linear theory and decay beyond x ~ 36 cm. 
The predicted transition onset locations based on prms = 0.1 and 0.2 are 28 and 36 cm, respectively, for Case 2. The 
experimentally observed transition onset location is at about 36 cm. Figure 19(b) shows the computed amplitude 
(rms) spectra at an axial location of x = 30 cm. The results obtained with the linear simulation are included here. The 
amplitudes with the full simulations are slightly smaller than that obtained with the linear calculation. The amplitude 
peaks at about 260 kHz and the maximum amplitude is about 0.25. The bandwidth of the most amplified frequencies 
are in the range of 225 to 300 kHz. Figure 19(c) shows the computed and measured power spectral density (PSD) 
distributions at the same axial location x = 30 cm. The computed shape of the PSD and the peak frequency agree 
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very well with the measurements. Similar to Case 1 the maximum computed PSD amplitude is about an order of 
magnitude higher than the measured value. 
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Figure 19. (a) Variations of the rms of the wall pressure fluctuations, (b) spectral amplitude of the 

pressure fluctuations at x = 30 cm, and (c) power spectral density at x = 30 cm for Case 2. 
 

 Figures 20(a), (b) and (c) show the variation of the rms, the spectral amplitude, and the PSD of the wall pressure 
fluctuations at x = 20 cm, respectively, for Case 3. The bandwidth of the input frequencies in this case ranges from 
390 to 590 kHz and the bin size is 10 kHz.  As in the previous cases, simulations are performed with three random 
phase angle sets, one linear case, and one with a single frequency input of 490 kHz. The experimentally measured 
rms values are also included as black symbols in Fig. 20(a). The simulation results obtained using this approach 
differ from the measured values below x < 25 cm. Beyond that, the computed rms values follow the trend of the 
measured values. The observations are similar to the previous cases. The disturbances evolve linearly up to x ~ 16 
cm and, beyond that, nonlinear effects stabilize the growth. The predicted transition onset locations based on prms = 
0.1 and 0.2 are 17 and 21 cm, respectively. The experimentally observed transition onset location is at about 25 cm. 
Figure 20(b) shows the computed amplitude (rms) spectra at an axial location of x = 20 cm. The results obtained 
with the linear simulations are included here. Similar to the previous cases, the amplitude of the rms pressure 
fluctuations with the full simulation are slightly smaller than that obtained with the linear calculations. The 
amplitude peaks at about 490 kHz and the maximum amplitude is about 0.21. The bandwidth of the most amplified 
frequencies are from 440 to 590 kHz. Figure 20(c) similarly shows the computed and measured power spectral 
density (PSD) distributions at the same axial location x = 20 cm. The computed shape of the PSD and the peak 
frequency agree very well with the measurements. In this case compared to the previous two cases, the computed 
PSD amplitudes also agree very well with the measurements. Overall, the predicted transition locations and the PSD 
shapes and the unstable frequency range agree well with the measurements for the Cases 1, 2 and 3. 
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 The predicted maximum N-factors at the transition onset points obtained from the linear PSE calculations for the 
sharp nose Cases 1, 2, and 3 are Ncase1 = 4.0, Ncase2 = 5.1, and Ncase3 = 6.7, respectively. Hence, the N-factors at the 
transition onset location for the same geometry and in the same tunnel gradually increase with the unit Reynolds 
numbers. The initial amplitudes of the pressure fluctuations, prms, at x ~ 1.0 cm obtained from the Figs. 18, 19, and 
20 are about 1.0*10-2, 1.0*10-3, and 4.0*10-4, respectively. The initial rms contains contributions from all the 
frequencies, not only the contribution from the frequency band that causes the transition. The initial amplitudes are 
about 10 and 25 times smaller in Cases 2 and 3 compared to Case 1. Hence, the reason for the increasing N-factors 
with unit Reynolds numbers is that the frequency band that causes the transition is centered at higher frequencies 
and the freestream noise level decreases with increasing frequency. 
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Figure 20. (a) Variations of the rms of the wall pressure fluctuations along the cone, (b) spectral amplitude 
of the pressure fluctuations at x = 20 cm, and (c) power spectral density at x = 20 cm for Case 3. 

 
Figures 21-24 show the simulation results for the blunt nose Cases 4 and 5. Similar to Figs. 16(a) and (b), Figs. 

21(a) and (b) show the density perturbations contours obtained from the simulations for Case 5. Similar results were 
obtained for Case 4. Figure 21(a) depicts the perturbations outside and inside the boundary layer and Fig. 21(b) 
displays the results inside the boundary layer in a downstream region. Figure 21(a) shows the wave packet type 
forcing that occurs in the freestream. Figure 21(b) also shows that the disturbances generated are wave packets 
consisting of all the input frequencies. As we observed in the receptivity simulations results for the flow over the 
blunt cone in Fig. 14, Fig. 21(a) shows that the disturbances are first generated inside the entropy layer near the nose 
region. Figures 22(a) and (b) show the wall pressure perturbations generated by the interaction of plane two-
dimensional acoustic disturbances with the cone for Case 5. Figure 22(a) displays the results in linear-scale and Fig. 
22(b) displays the results in log-scale. These pictures quantitatively illustrate the form and the amplitude variations 
of the wall pressure fluctuations generated by a broadband acoustic disturbance. The disturbances at a fixed time 
consist of a train of wave packets whose amplitudes slowly decrease up to x ~ 75 cm. Beyond that, the disturbances 



 
American Institute of Aeronautics and Astronautics 

 

21 

grow due to the second-mode instability. The transition onset for this case occurred in the experiment around x = 68 
cm. It is seen that the disturbances did not start to grow until x ~ 80 cm in this case.  

 

 

 
Figure 21. Density fluctuations generated by the interaction of broadband slow two-dimensional acoustic 
disturbances with the sharp cone for Case 5. (a) in a larger domain, and (b) inside the boundary layer. 
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Figure 22. Amplitude of the pressure fluctuations on the wall generated by the slow acoustic waves for 

Case 5 (a) in linear scale, and (b) in log-scale. 
 

Figures 23(a), (b) and (c) show the variation of the rms of the wall pressure fluctuations along the cone, the 
spectral amplitude and the PSD of the wall pressure fluctuations at x = 90 cm, respectively, for Case 4. The 
bandwidth of the input frequencies in this case is from 130 to 280 kHz and the bin size is 5 kHz.  As in the previous 
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cases, simulations are performed with two random phase angle sets, and one linear case. The experimentally 
measured rms values are also included as black symbols in Fig. 23(a). The measured rms values are about an order 
of magnitude larger than the computed values in the region x < 60 cm. Beyond that, the growth of the measured and 
the computed rms follow the same slope approximately, but the measured amplitudes are higher than the computed 
values. Also, the measured rms amplitudes peak much earlier compared to the computed results. The observations 
are similar to the previous cases. However, in this case, the disturbances evolve linearly up to x ~ 100 cm, which is 
well beyond the transition onset point. The experimentally observed transition onset location is at about 68 cm. The 
predicted transition onset locations based on prms = 0.1 and 0.2 are 92 and 96 cm, respectively. Hence the transition 
onset location is over-predicted by this method by 24 to 28 cm. It is possible that the simulations must consider 
acoustic waves impinging the cone at an incident angle rather than at 0° to obtain a better prediction. Figure 23(b) 
shows the computed amplitude (rms) spectra at an axial location of x = 90 cm for both the full simulation and the 
linear simulation. The amplitude with the full simulation is almost the same as that obtained with the linear 
simulations. The amplitude peaks at about 200 kHz and the maximum amplitude is about 0.05. The bandwidth of the 
most amplified frequencies are from 180 to 210 kHz. Hence the bandwidth of the dominant frequency band is very 
narrow, on the order of 30 kHz. Figure 23(c) similarly shows the computed and measured power spectral density 
(PSD) distributions at the same axial location x = 90 cm. The computed shape of the PSD is narrower than the 
measured spectrum. However, the computed peak frequency agrees with the measurement. At this point, we do not 
know why the measured spectrum is broader than that predicted by the linear theory.  
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Figure 23. (a) Variations of the rms of the wall pressure fluctuations along the cone,  (b) spectral 
amplitude of the pressure fluctuations, and (c) power spectral density at x = 90 cm for Case 4. 

 
Figures 24(a), (b) and (c) show the variation of the rms of the wall pressure fluctuations along the cone, the 

spectral amplitude and the PSD of the wall pressure fluctuations at x = 90 cm, respectively, for Case 5. The 
bandwidth of the input frequencies in this case is from 130 to 280 kHz and the bin size is 5 kHz. The observations 
are similar to Case 4. The measured rms values differ from the predicted values. The measured rms values are larger 
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than the predicted values up to x ~ 90 cm. The measured rms values peak around x ~ 90 cm and decrease 
downstream. The measured maximum rms value is about 0.10 and is much lower than the predicted values. As 
discussed earlier, the measured transition onset point is also at x ~ 68 cm, as in the low Reynolds number case, Case 
4. The predicted transition onset locations based on prms = 0.1 and 0.2 are 90 and 93 cm, respectively. Again, the 
transition onset point is over-predicted by 22 to 25 cm using this method. However, the predicted transition onset 
point for Case 5 is at the same location as for Case 4, which is similar to what was observed in the experiment. 
Figure 24(b) shows the computed amplitude (rms) spectra at an axial location of x = 90 cm. The amplitude peaks at 
about 255 kHz and the maximum amplitude is about 0.025. The bandwidth of the most-amplified frequencies ranges 
from 230 to 270 kHz. Hence, the bandwidth of the dominant frequency band is very narrow as in the previous case, 
on the order of 40 kHz. Figure 24(c) similarly shows the computed and measured power spectral density (PSD) 
distributions at the same axial location x = 90 cm. Similar to the previous Case 4, the computed spectrum is 
narrower than the measurement. The computed most amplified frequency range agrees with the measurement. The 
computed peak PSD amplitude is about an order higher than the measurement. Overall, the agreements between the 
prediction and measurements for the blunt nose cases are not as good as for the sharp cone cases. We have to 
explore these cases further to explain these observed differences. 
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Figure 24. (a) Variations of the rms of the wall pressure fluctuations, (b) spectral amplitude of the 
pressure fluctuations at x = 90 cm, and (c) power spectral density at x = 90 cm for Case 5. 

V.   Discussion and Conclusion 
The transition onset locations on a 7-degree half-angle cone at different unit Reynolds numbers in hypersonic 

flow at a freestream Mach number of 10 were predicted using freestream spectra, receptivity, linear and weakly 
nonlinear growth, and a threshold amplitude for transition onset. The geometry and the freestream conditions were 
the same as in the experiment.21 We performed the simulations for two nose radii, one sharp and the other a medium 
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bluntness. The unit Reynolds number was varied from small to large values in both cases. The only input into the 
simulations was the measured freestream spectrum of the pressure perturbations. We assumed the spectrum contains 
only one-dimensional plane acoustic disturbances. As it was done in Ref. 21, we assumed an f -3.5 variation for the 
measured freestream spectrum. We represented the measured spectrum as a sum of discrete two-dimensional plane 
slow acoustic waves. The amplitude of each wave was obtained by equating the energy in each wave with the 
energy in the measured spectrum within a small bin. The acoustic waves were superposed at the outer boundary of 
the computational domain and time accurate two-dimensional simulations were performed to investigate the 
generation and evolution of disturbances inside the boundary layer. Both the steady and unsteady solutions were 
obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order 
accurate, weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-
variation-diminishing (TVD) Runge-Kutta scheme for time integration.  

The computed mean profiles were analyzed by using local stability and non-local parabolized stability equations 
(PSE) methods. The results for the sharp nose cases showed that the boundary layer profiles approach the similarity 
profiles within a short distance from the tip of the cone.  The maximum N-factors at the measured transition onset 
locations increased gradually with the unit Reynolds number. It was also observed that the most amplified 
frequencies and the band of unstable frequencies also increased with the unit Reynolds number. The results for the 
blunt nose cases showed that the flow fields near the nose region were dominated by the entropy layers that were 
generated by the bow shocks formed in front of the blunt nose. No discernable boundary layers were observed in the 
nose region for the flow over blunt cones. The entropy layer persisted for about 100 nose radii downstream and 
eventually merged with the boundary layer developing along the wall. The boundary layer remained stable until the 
merging of the entropy and the boundary layers. The maximum N-factors at the measured transition onset locations 
were small compared to the sharp nose cases at the comparable unit Reynolds numbers. It was also observed that the 
measured transition onset locations and the computed N-factors were the same for the small and large Reynolds 
numbers. The unstable frequency bands were also very narrow compared to the sharp nose cases at comparable unit 
Reynolds numbers. 

The receptivity simulations with a single acoustic wave revealed that the receptivity coefficients increase mildly 
with the unit Reynolds number for the flows over sharp cones. The receptivity coefficients based on the wall 
pressure fluctuations near the nose region are about 4 times the amplitude of the freestream acoustic wave. The 
simulations for the blunt nose cases showed that the wall pressure fluctuations slowly decay for long distances 
before they grow again due to the second mode instability. The receptivity coefficients are smaller, on the order of 1, 
compared to flow over sharp cone cases. It was also observed that large density fluctuations are generated inside the 
entropy layer. These fluctuations initially grew slightly and remained almost constant for long distances until they 
grew again due to the second mode instability. 

The transition onset locations were predicted by incorporating the freestream spectrum, receptivity, linear and 
nonlinear evolution, and a threshold for the amplitude of the wall pressure fluctuations. The predicted transition 
onset locations are close, within 10%, to the measured locations for the sharp nose cases. The computed rms values 
of the wall pressure fluctuations are about two times smaller than the measured values. However, the variations 
follow the same trend as predicted by the simulations. The predicted PSD also agree in shape and frequency range. 
However, the predicted amplitudes are an order of magnitude higher than the measured values. Overall, the 
agreements between the computations and the experiment are very encouraging. There may be many known and 
unknown reasons for the differences, including the use of plane vs. oblique incident waves, the use of a one-
dimensional spectrum vs. a two-dimensional spectrum, etc. Speculation on any specific reason for the difference is 
not made at this time, but investigating these differences must be pursued both experimentally and computationally 
to bridge the gap. 

The comparisons for the blunt nose cases are not as good as that for the sharp cone cases. The transition onset 
locations are overpredicted by about 30% compared to the measurements. The disturbances started to grow earlier in 
the experiment than was predicted. The measured PSD are broader than the computed spectrum. But the predicted 
most amplified frequencies and the peak amplitudes agree well with the experiment. 

In this paper, we attempted to predict transition onsets for flow over cones using measured freestream spectrum 
and two-dimensional numerical simulations.  The approach provided encouraging results for widely different flow 
conditions. The question is how can we improve the prediction further? As we mentioned earlier, we considered 
only plane two-dimensional acoustic waves in the simulations. In wind tunnels, the noise is radiated from the nozzle 
walls at oblique angles. We have to consider acoustic disturbances impinging the cone at oblique angles in the 
simulations. The predictions for the flow over a medium blunt cone were not very satisfactory. The prediction of 
transition in flows over blunt geometries continues to be a challenging problem. In the present simulations, we 
observed large oscillations inside the entropy layer. One possibility is to consider three-dimensional freestream 
disturbances in the simulations and see whether they introduce any large oscillations and cause early transition. In 
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addition, off-body instability measurements inside the boundary and entropy layers are needed to identify 
mechanisms that are responsible for transition in flows over blunt geometries.  
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